Low-Rank Modification of the Unsymmetric Lanczos Algorithm

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the squared unsymmetric Lanczos method

The biorthogonal Lanczos and the biconjugate gradient methods have been proposed as iterative methods to approximate the solution of nonsymmetric and indefinite linear systems. Sonneveld (1989) obtained the conjugate gradient squared by squaring the matrix polynomials of the biconjugate gradient method. Here we square the unsymmetric (or biorthogonal) Lanczos method for computing the eigenvalue...

متن کامل

A Parallel Version of the Unsymmetric Lanczos Algorithm and its Application to QMR

A new version of the unsymmetric Lanczos algorithm without look-ahead is described combining elements of numerical stability and parallel algorithm design. Firstly, stability is obtained by a coupled two-term procedure that generates Lanczos vectors scaled to unit length. Secondly, the algorithm is derived by making all inner products of a single iteration step independent such that global sync...

متن کامل

A Refined Unsymmetric Lanczos Eigensolver for Computing Accurate Eigentriplets of a Real Unsymmetric Matrix

For most unsymmetric matrices it is difficult to compute many accurate eigenvalues using the primitive form of the unsymmetric Lanczos algorithm (ULA). In this paper we propose a modification of the ULA. It is related to ideas used in [J. Chem. Phys. 122 (2005), 244107 (11 pages)] to compute resonance lifetimes. Using the refined ULA we suggest, the calculation of accurate extremal and interior...

متن کامل

The Improved Unsymmetric Lanczos Process on Massively Distributed Memory Computers

|For the eigenvalues of a large and sparse unsym-metric coeecient matrix, we propose an improved version of the unsymmetric Lanczos process combining elements of numerical stability and parallel algorithm design. Stability is obtained by a coupled two-term recurrences procedure that generates Lanczos vectors scaled to unit length. The algorithm is derived such that all inner products and matrix...

متن کامل

Generalized block Lanczos methods for large unsymmetric eigenproblems

Generalized block Lanczos methods for large unsymmetric eigenproblems are presented, which contain the block Arnoldi method, and the block Arnoldi algorithms are developed. The convergence of this class of methods is analyzed when the matrix A is diagonalizable. Upper bounds for the distances between normalized eigenvectors and a block Krylov subspace are derived, and a priori theoretical error...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1995

ISSN: 0025-5718

DOI: 10.2307/2153372